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ABSTRACT

We introduce a 3D model-based approach for automatic
segmentation of 3D fluorescent heterochromatin foci from
microscopy images. The approach employs a new 3D para-
metric intensity model based on a spherical harmonics (SH)
expansion and can represent foci of regular and highly
irregular shapes. By solving a least-squares minimization
problem, the new model is directly fitted to the 3D image
data, and the model parameters including the SH expansion
coefficients are estimated. The approach has been success-
fully applied to real 3D microscopy image data and has been
compared to previous approaches.

Index Terms— 3D parametric intensity model, spherical
harmonics, heterochromatin, confocal light microscopy

1. INTRODUCTION

The nuclear organization of the genome consisting of euchro-
matin and heterochromatin is important for genome regula-
tion and cell function. Using confocal light microscopy, high
concentrations of heterochromatin or heterochromatin asso-
ciated proteins can be visualized as fluorescent foci. Investi-
gation of these foci under different experimental conditions
provides important information about heterochromatin for-
mation and maintenance. Since 3D microscopy images typ-
ically contain a large number of fluorescent foci, and since
their size, shape, and signal intensity vary significantly (see
Fig. 1), manual analysis is not feasible. Especially for foci of
irregular shape (see the marked region in Fig. 1a for exam-
ples), manual segmentation in 3D is difficult and error-prone.
Hence, automatic 3D image analysis approaches are required
which can cope well with fluorescent foci of irregular shape,
even in the case of high noise and intensity inhomogeneities.

Previous approaches for 3D heterochromatin segmenta-
tion often rely on global intensity thresholds (e.g., [1]). In [2],
segmentation is performed by energy minimization within im-
age regions using graph cuts. However, the aforementioned
approaches do not determine an analytic representation of
the foci and are limited by the resolution of the voxel grid.

In comparison, model-based approaches using 3D paramet-
ric intensity models are not limited by the resolution of the
voxel grid and allow determining an analytic representation
of the foci shapes with subvoxel accuracy. Such approaches
have successfully been used for 3D segmentation of subcel-
lular structures from microscopy images (e.g., [3, 4]) and for
heterochromatin analysis [5]. However, there only regularly
shaped models (e.g., ellipsoids) were used.

In this work, we propose an automatic approach for 3D
model-based segmentation of fluorescent foci from hete-
rochromatin microscopy images. We introduce a new 3D
parametric intensity model based on spherical harmonics
(SH), which in comparison to [3, 4, 5] copes well with highly
irregular foci shapes. SH form a complete set of basis func-
tions defined on the sphere, enabling spherical functions
to be expanded into a series of SH [6, 7]. In biomedical
image analysis, SH were previously used, for example, for
shape characterization (e.g., [8, 9, 10]), shape registration
(e.g., [11]), and surface smoothing. However, only few ap-
proaches directly employ SH for model-based segmentation
(e.g., [6, 12]). So far, such approaches were not used for mi-
croscopy images and they require training data [6] or manual
initialization [12]. In our approach, training data is not nec-
essary and the proposed 3D SH intensity model is initialized
fully automatically. In addition, in contrast to previous work
we use SH to formulate a parametric intensity model. By
solving a least-squares minimization problem, the model is
directly fitted to the image intensities and the model param-
eters including the SH expansion coefficients are estimated.
These parameters provide a compact description of the shape
and intensity of a 3D fluorescent focus. Our approach was
applied to real 3D microscopy images and was compared to
two previous approaches for segmentation of fluorescent foci.

2. METHODS

In our approach, the 3D shape of fluorescent foci is analyti-
cally described using a spherical harmonics (SH) expansion
(see Section 2.1). Based on the SH expansion, we formu-
late a 3D SH parametric intensity model, which represents
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(a) HP1α (b) Heterochromatin

Fig. 1. Maximum intensity projections (MIPs) of a cell nu-
cleus in a 3D two-channel microscopy image: Heterochro-
matin protein 1α (HP1α) (a) and heterochromatin (b). The
circle in (a) marks an image region with three irregularly
shaped HP1α foci.

the image intensities of fluorescent foci and which considers
the blurring effect of the imaging process (see Section 2.2).
To automatically segment 3D heterochromatin foci from mi-
croscopy images, 3D foci detection is performed and the 3D
SH intensity model is directly fitted to the image intensities
using least-squares minimization (see Section 2.3).

2.1. Spherical Harmonics Shape Model

We describe the 3D shape of fluorescent foci using an expan-
sion into a series of spherical harmonics (SH) basis functions.
In our application, we assume the 3D region F of a fluores-
cent focus to be star-shaped, i.e., a point q ∈ F exists such
that each ray originating from q intersects the surface of F
exactly once. If q is the origin of a spherical coordinate sys-
tem, then the surface of F can be described by a 3D radius
function r(θ, ϕ). Since r(θ, ϕ) is real-valued, we employ the
real-valued SH basis functions [13] of degree l and order m

Y ml (θ, ϕ) =
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are chosen such that the SH basis functions are
orthonormal w.r.t. θ and ϕ [7]. Based on (1), r(θ, ϕ) can be
written as the real-valued SH expansion
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with the series degree lmax and the expansion coefficients a =

(a00, ..., a
lmax
lmax

)T and b = (b11, ..., b
lmax
lmax

)T , i.e., the weights of
the SH basis functions. With increasing value of lmax, the

number of the SH basis functions also increases and more
complex shapes can be described. For lmax = 0, the shape is
equivalent to a sphere with radius a00.

2.2. 3D Parametric Intensity Model

The real-valued SH expansion in (2) describes the shape of a
star-shaped 3D object, such as a fluorescent focus. Based on
(2), we can formulate an ideal step-shaped 3D intensity model

gSH,ideal(x) =

{
1 0 ≤ r ≤ rSH(θ, ϕ)

0 otherwise
(3)

where x = (x, y, z)T denotes the 3D position, and the
spherical parameters r, θ, and ϕ are defined by r(x) =√
x2 + y2 + z2, θ(x) = cos−1

(
z

r(x)

)
, and ϕ(x) = tan−1( y

x
).

To incorporate the blurring effect of the imaging process
described by the point spread function (PSF) of the micro-
scope, we incorporate a convolution of gSH,ideal(x) with a
Gaussian function specified by the standard deviation σ. The
3D SH intensity model is then given by

gSH(x) = Φσ(r+ rSH(π− θ, ϕ+π))−Φσ(r− rSH(θ, ϕ)) (4)

where Φσ(x) = Φ( x
σ

) is the Gaussian error function with stan-
dard deviation σ and Φ(x) =

∫ x
−∞(2π)−1/2e−ξ

2/2dξ. We fur-
ther include a 3D rigid transformR(x,x0,α) with translation
x0 = (x0, y0, z0)T and rotation α = (α, β, γ)T as well as back-
ground and foreground intensity levels a0 and a1 to obtain the
final 3D SH intensity model

gM,SH(x,p) = a0 + (a1 − a0)gSH(R(x,x0,α)) (5)

where p = (a,b, a0, a1, σ,α,x0)
T represents the model

parameters.

2.3. Automatic 3D Foci Segmentation

To automatically segment 3D heterochromatin foci from
microscopy images, we propose a two-step approach consist-
ing of 3D foci detection and 3D model-fitting of the 3D SH
intensity model. In the first step, we apply a 3D Gaussian fil-
ter to denoise the image and discard all intensity values below
a clipping threshold to suppress the image background. We
then perform a local maxima search within cubic 3D regions-
of-interest (ROIs) to detect 3D foci. The optimal clipping
threshold for each cell nucleus is automatically computed
based on the 3D intensity histogram hi of the i-th nucleus by
Tclip = µi + c · σi, where µi and σi denote the mean and
standard deviation of hi, and c is a constant parameter (e.g.,
c = 2). c is determined once for a biological experiment and
remains unchanged for all images. To compute hi, 3D seg-
mentation of the nuclei is performed by 3D Gaussian filtering
and 3D Otsu thresholding.

In the second step, to determine the model parameters p,
the 3D SH intensity model gM,SH(x,p) in (5) is fitted to the
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(a) (b)

Fig. 2. Examples of segmented 3D SH intensity models from
the real 3D microscopy image in Fig. 1a (see the marked re-
gion). (a) 3D visualization of the foci shapes (b) 3D plot of
the 2D intensity profile of a cross-section (z = 0) of the focus
at the right of (a).

image intensities g(x) within spherical ROIs by using a least-
squares minimization of the objective function∑

x∈ROI

(gM,SH(x,p)− g(x))2 −→ min .

For the minimization we use the method of Levenberg and
Marquardt which incorporates first order partial derivatives of
gM,SH w.r.t. the model parameters p. All partial derivatives
are derived analytically. The minimization is performed for
each detected 3D focus from the first step and the position is
used to initialize the translation parameters x0 of gM,SH .

3. EXPERIMENTAL RESULTS

We have applied our approach to 33 real 3D two-channel
microscopy images of mouse fibroblast cells (130× 130× 41
or 250×250×64 voxels). The images were acquired by a con-
focal laser scanning microscope. To cope with the strongly
varying size of the foci (e.g., 20−600 voxels in one nucleus),
we distinguish between small and large foci and use a series
degree lmax of 4 and 7, respectively, in the heterochromatin
protein 1α (HP1α) channel. For the heterochromatin (HC)
channel we decrease lmax by one since this channel exhibits
a higher level of image noise and less details about the shape
of the foci (see Fig. 1). As an example, Fig. 2a shows 3D
segmentation results of large HP1α foci marked in Fig. 1a. It
can be seen that our model can represent highly irregular and
complex shapes. Fig. 2b shows a 3D plot of the 2D intensity
profile of a cross-section of the focus at the right of Fig. 2a.

For comparison, we also applied two previous approaches:
An approach based on a 3D Gaussian intensity model [4] and
a 3D combined approach based on region-adaptive segmen-
tation and a 3D Gaussian intensity model [5]. Fig. 3 shows
for all three approaches examples of 3D segmentation results
of HP1α foci. It can be seen that for small foci the previous
approach based on a 3D Gaussian model yields relatively
good results, however, it fails to accurately segment large
foci of irregular shape (see the circles in Fig. 3b). The 3D
combined approach generally yields a good result, however,

(a) (b)

(c) (d)

Fig. 3. MIP of (a) a cell nucleus in a 3D microscopy image
and 3D segmentation results of HP1α foci (contour overlays):
(b) 3D Gaussian intensity model (red), (c) 3D combined ap-
proach based on region-adaptive segmentation (blue) and a
3D Gaussian intensity model (red), and (d) 3D SH intensity
model (magenta).

for large foci of irregular shape with other foci in close prox-
imity, undersegmentation occurs (see the circle in Fig. 3c).
In comparison, the new approach yields a better result (e.g.,
undersegmentation does not occur) and the approach can cope
well with foci of different sizes and highly irregular shapes
(see Fig. 3d).

To quantify the segmentation accuracy, we computed the
Dice coefficient between the 3D segmentation results and 3D
ground truth data. Ground truth was provided manually by an
expertE1 for 3D foci in seven 3D microscopy images (75 foci
in total, 45 HP1α foci and 30 HC foci). To determine the
interobserver variability, a second expert E2 manually per-
formed 3D segmentation. Manual 3D segmentation was per-
formed slice-by-slice in the original microscopy images by
drawing contours of the foci. For the automatic approaches,
all foci were segmented using a fixed set of parameters. Note
that due to the high level of image noise and a high variability
of foci shapes, manual 3D segmentation of the foci is a diffi-
cult task, and therefore the interobserver variability between
E1 and E2 was relatively high. Table 1 shows the mean value
D and the standard deviation σD of the Dice coefficient of
the different approaches w.r.t. the ground truth provided by
expert E1 and separately for HP1α foci and HC foci. It can
be seen that the new approach outperforms the previous ap-
proaches for HP1α and HC foci. Table 2 shows the result for
all foci. In addition, we compared the automatic 3D segmen-
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Manual 3D automatic segmentation
Gaussian Combined SH

HP1α D 0.700 0.662 0.699 0.707
σD 0.058 0.112 0.098 0.095

HC D 0.685 0.635 0.654 0.726
σD 0.046 0.109 0.110 0.113

Table 1. Quantitative 3D segmentation results of HP1α and
heterochromatin (HC) foci for real 3D microscopy images:
Mean value D and standard deviation σD of the Dice coef-
ficient for different automatic approaches with ground truth
provided by expert E1 as well as result for manual segmenta-
tion by expert E2.

Manual 3D automatic segmentation
Gaussian Combined SH

DE1 0.694 0.651 0.682 0.714
DE2 0.635 0.664 0.689
σD,E1 0.054 0.111 0.105 0.102
σD,E2

0.104 0.093 0.069

Table 2. Same as Table 1, but for all foci (HP1α and HC) and
comparison with ground truth from two experts E1 and E2.

tation results w.r.t. the ground truth provided by the second
expert E2. It can be seen that the new approach yields better
results than the two previous approaches w.r.t the ground truth
results of both experts E1 and E2. It also turns out that the
result of the new approach is comparable to the interobserver
variability (see the bold numbers in Table 2).

4. CONCLUSION

We introduced a 3D model-based approach for automatic
segmentation of 3D fluorescent heterochromatin foci from
microscopy images. The approach employs a new 3D
parametric intensity model based on a spherical harmonics
expansion for star-shaped objects and analytically describes
the shapes and intensities of the foci. The approach has been
successfully applied to real 3D two-channel microscopy im-
age data and has been compared to two previous approaches.
It turned out that the approach copes well with foci of highly
irregular shapes and yields better results than the two previ-
ous approaches. In future, we plan to apply the approach to a
larger number of 3D images to study genome regulation and
cell function.
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